Relationship Between Lesion Vessel Area and Myocardial Salvage Assessed by Myocardial Single Photon Emission Computed Tomography in Acute Myocardial Infarction With Stenting After Thrombectomy

Masatsugu NAKANO, MD

Kenji WAGATSUMA, MD

Hideyuki SATO, MD

Hideo NII, MD

Hideo AMANO, MD

Mikihito TODA, MD

Shohei YAMASHINA, MD*

Junichi YAMAZAKI, MD, FJCC*

Abstract

Objectives. To study the relationship between lesion vessel area and myocardial salvage assessed by myocardial single photon emission computed tomography(SPECT) in acute myocardial infarction with stenting after thrombectomy.

Methods. This study included 71 patients who underwent stenting after thrombectomy for acute myocardial infarction. Intravascular ultrasound IVUS was performed after thrombectomy. Patients were classified into two groups: the High group with external elastic membrane cross-sectional area (EEM-CSA) of the lesion ≥ 18 mm² (34 patients) and the Low group with EEM-CSA < 18 mm² (37 patients). Dual isotope myocardial SPECT imaging was undertaken by perfusion SPECT (201 Tl or 99 mTc-MIBI) and 123 I-15 (99 liodophenyl) 3 (R,-S) methylpentadecanoic acid (BMIPP). The image of the left ventricular myocardium was divided into 17 segments to calculate total defect score using a 5-grade assessment (0: normal - 4: defect). Differences in total defect score of perfusion SPECT and 123 I-BMIPP was defined as mismatch.

Results. Culprit lesion morphology was assessed by IVUS. A higher incidence of lipid pool-like images (47% vs 5%, p < 0.01)was observed in the High group. The results of myocardial SPECT study revealed no difference in the total defect score of ¹²³I-BMIPP(18.3 \pm 5.5 vs 17.3 \pm 6.3 points)but the mismatch in total defect score of perfusion SPECT and ¹²³I-BMIPP was significantly lower in the High group(3.8 \pm 3.9 vs 7.7 \pm 4.2 points, p < 0.05).

Conclusions. Patients with a high culprit lesion vessel area show fewer beneficial effects in myocardial salvage compared with those with low vessel area as assessed by myocardial SPECT in acute myocardial infarction with stenting after thrombectomy.

J Cardiol 2006 Mar; 47(3): 123 - 131

Key Words

■Coronary heart disease ■Myocardial infarction, treatment (acute)

■Intravascular ultrasound ■Interventional cardiology (stent)

■Radionuclide imaging (SPECT)

東邦大学医療センター大森病院 循環器センター心血管インターベンション室 , *循環器センター内科: 〒143 - 8541 東京都 大田区大森西6 - 11 - 1

Division of Interventional Cardiology, Cardiovascular Center, *Division of Cardiovascular Center, Internal Medicine, Toho University Omori Medical Center, Tokyo

Address for correspondence: NAKANO M, MD, Division of Interventional Cardiology, Cardiovascular Center, Toho University Omori Medical Center, Omori-nishi 6 - 11 - 1, Ota-ku, Tokyo 143 - 8541; E-mail: toho 9686@illy.ocn.ne.jp Manuscript received November 1, 2005; revised December 9, 2005; accepted December 10, 2005

INTRODUCTION

No reflow phenomenon is known to occur in reperfusion therapy by percutaneous transluminal coronary intervention(PCI)for acute myocardial infarction, and is a major issue for myocardial salvage in patients with acute myocardial infarction¹⁻³). One mechanism for the occurrence of the no-reflow phenomenon in PCI is microvascular embolization caused by thrombus and plaque debris from the lesion site⁴). Thrombectomy devices and embolic protection devices are effective to prevent this occurrence⁵⁻⁹). However, several studies have noted patients with worsening of coronary flow after performing plain old balloon angioplasty or stent implantation following thrombectomy, suggesting that the preventive effects of thrombectomy devices against microvascular embolization may be insufficient in some patients 10,11)

Large lesion external elastic membrane cross-sectional area (EEM-CSA) as measured by intravascular ultrasound (IVUS) is an independent predictive factor of the no-reflow phenomenon in acute myocardial infarction¹². However, no studies have investigated the effect of damage to the microcirculation in patients with a large lesion EEM-CSA if stenting is performed after thrombectomy.

This study investigated the relationship between culprit lesion vessel area, assessed by IVUS, and myocardial salvage, assessed by myocardial single photon emission computed tomography (SPECT), in patients with acute myocardial infarction who underwent stenting after thrombectomy.

SUBJECTS AND METHODS

Subjects

This study included 71 of 131 patients with initial myocardial infarction who underwent stenting from May 2003 to February 2005 at our institution within 12 hr of the onset of symptoms. These 71 patients underwent IVUS studies following thrombectomy. Patients with Thrombolysis in Myocardial Infarction (TIMI) flow grade¹³ in base line coronary angiography, target lesion in the left main coronary artery or left circumflex artery, or those using embolic protection devices were excluded from this study.

Patients who did not undergo IVUS were complicated by cardiogenic shock, had a target vessel < 2.5 mm from visual confirmation of coronary angiography findings, or in whom the IVUS

catheter was unable to cross over the lesion were also excluded. The mean lesion EEM-CSA measured by IVUS was $18.4 \pm 4.3 \,\mathrm{mm^2}$ in patients exhibiting the no-reflow phenomenon during PCI for acute myocardial infarction¹²). Based on this result, the patients were classified into two groups according to lesion size: the High group with lesion EEM-CSA $\geq 18 \,\mathrm{mm^2}(34 \,\mathrm{patients}, 34 \,\mathrm{lesions})$ and the Low group with EEM-CSA $< 18 \,\mathrm{mm^2}(37 \,\mathrm{patients}, 37 \,\mathrm{lesions})$, for a comparative retrospective study of clinical outcomes.

Diagnosis and procedure

The diagnosis of acute myocardial infarction was made after > 30 min of continuous chest pain, with ST segment elevation > 2.0 mm in at least two contiguous electrocardiogram leads, and a > 3-fold increase in serum creatine kinase of the normal levels.

Baseline coronary angiography was conducted after 5,000 U of interarterial heparin was administered through a 6F or 7F sheath inserted in the radial or femoral artery. After performing angiography of the collateral artery and evaluating coronary flow by the Rentrop classification¹⁴, angiography of the culprit artery was conducted with a guiding catheter to evaluate TIMI flow grade. The lesion was crossed by the guide wire and PCI was performed by inserting a 6F or 7F Thrombuster thrombectomy catheter (Kaneka Co. Ltd.). Blood (20 - 50 ml.) was manually aspirated while moving the thrombectomy catheter back and forth from the distal and proximal sites of the lesion.

After removal of the thrombectomy catheter, the Avanar IVUS catheter (Volcano Co. Ltd) was inserted distal to the lesion, and observations were conducted while pulling the catheter back to the coronary orifice using the auto pull back system (1 mm/sec). Plain old balloon angioplasty was performed after observations, followed by stent implantation. TIMI flow grade was assessed in the coronary angiography following PCI. The selection of type, size and length of stent to be used was left to the discretion of the operator. Dilation was achieved by inflation under a maximum inflation pressure of 10 atm or more.

In principle, oral administration of anti-platelet agent(aspirin 81 or 162 mg/day, ticlopidine 200 mg/day) was continued for at least 2 weeks following the procedure.

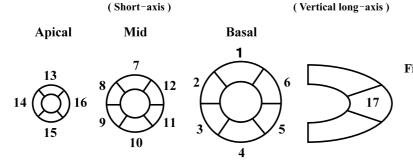


Fig. 1 Left ventricular myocardium was divided into 17 segments, and total defect score calculated using a 5grade evaluation system

0: normal, 1: mildly reduced, 2: moderately reduced, 3: markedly reduced, 4: defect.

Angiographic analysis

Left ventricular angiography was performed on all patients in the acute phase(at the end of PCI) and the chronic phase(mean follow up 5.8 ± 1.1 months). CCIP-310(Cathex Co. Ltd) was used for quantitative assessments of left ventricular angiography. For assessment of the left ventricular function, using the SD/chord on angiograms was calculated by the centerline method to obtain regional wall motion values from the acute to chronic phase were also calculated for study.

Analysis of IVUS images

IVUS images were recorded on sVHS videotape and loaded into NETRA IVUS(ScImage, Ver. 2.04.00) for off-line analysis. The same investigator conducted all IVUS analyses. In IVUS assessment of culprit lesion morphology, fissure was defined as an abrupt, focal, superficial break in the linear continuity of the plaque, extending in a radial direction; dissection was defined as rupture of the vessel wall creating one or more neolumina; lipid pool-like image was defined as a pooling of lowechoic material or echolucent material covered with a high-echoic layer; and bright echoes deep in the vessel wall > 90 degrees with acoustic shadowing were defined as superficial calcium¹²). NETRA IVUS was used to measure the EEM-CSA and lumen cross-sectional area(lumen-CSA)at the lesion site and at proximal and distal reference segments. Plaque cross-sectional area(plaque-CSA) was calculated as EEM-CSA minus lumen-CSA. Positive remodeling was defined when lesion EEM-CSA was larger than proximal reference EEM-CSA¹⁶).

Myocardial SPECT analysis

Following the PCI procedure, all patients underwent dual isotope imaging by myocardial perfusion

SPECT using 201 TlCl(201 Tl) or 99 mTc-sestamibi (99 mTc-MIBI) and myocardial fatty acid metabolic SPECT using 123 I-15-(p-iodophenyl)-3-(R, -S) methylpentadecanoic acid(BMIPP) 17). Myocardial perfusion SPECT was conducted at a mean 7.3 \pm 4.7 days after the PCI procedure. Myocardial fatty acid metabolic SPECT was conducted at a mean 8.4 \pm 2.1 days following the procedure.

The left ventricular myocardium was divided into 17 segments on short-axis and vertical long-axis tomograms (Fig. 1). Two physicians specializing in nuclear cardiology visually scored each segment into 5-grade (0: normal, 1: mildly reduced uptake, 2: moderately reduced uptake, 3: markedly reduced uptake, 4: defect of uptake). The sum of total scores was expressed as total defect score, and a difference between total defect score of the perfusion agent and fatty acid agent (fatty acid agent - perfusion agent) was classified as mismatch 18). Scoring of myocardial SPECT was undertaken by investigators unaware of assignment of the High and Low groups.

Statistical analysis

Values are expressed as actual measurements, ratio (%) and mean \pm standard deviation. Continuous variables were compared by the *t*-test, and group comparisons by the 2 test.

RESULTS

Patient characteristics

No differences existed between the groups in age, sex, coronary risk factors, onset to recanalization time, or drugs used following the procedure. The High group had a significantly higher post PCI peak creatine kinase-MB(High: $301 \pm 157 \,\text{IU}/l$ vs Low: $221 \pm 129 \,\text{IU}/l$, p < 0.05; **Table 1**).

Table 1	Patient	charact	torictics
i ame i	гипеш	CHAFAC	I PET ISTITIS

	High group $(n = 34)$	Low group $(n = 37)$	p value
Age(yr)	64 ± 12	67 ± 12	NS
Male	29(85)	28(76)	NS
Risk factors			
Diabetes mellitus	11(32)	16(43)	NS
Hypertension	16(47)	20(54)	NS
Hyperlipidemia	15(44)	12(32)	NS
Smoking	16(47)	16(43)	NS
Onset to recanalization time(min)	234 ± 186	264 ± 216	NS
Creatine kinase(IU/l)	$3,820 \pm 1,976$	$3,010 \pm 1,722$	NS
Creatine kinase-MB(IU/l)	301 ± 157	221 ± 129	< 0.05
Medications			
ACE or ARB	25(74)	29(78)	NS
Calcium blocker	12(35)	14(38)	NS
Beta-blocker	3(9)	3(8)	NS

Continuous values are mean \pm SD. (): %.

High group: With lesion external elastic membrane cross-sectional area ≥ 18 mm². Low group: With lesion external elastic membrane cross-sectional area < 18 mm².

ACE = angiotensin converting enzyme inhibitor; ARB = angiotensin receptor blocker.

Angiographical characteristics and strategy for stenting

There were no differences between the groups in target vessel, number of lesion vessels, or TIMI flow grade and Rentrop classification in the baseline coronary angiography. Although the High group showed a lower incidence of TIMI 3 flow following PCI, this was not significant. Size of stent used (High: 3.9 ± 0.4 vs Low: 3.2 ± 0.3 mm, p < 0.01) and maximum inflation pressure (High: 15.6 ± 2.8 vs Low: 14.1 ± 2.8 atm, p < 0.05) were significantly higher in the High group (Table 2)

IVUS findings

Comparison of culprit lesion morphology found a higher incidence of fissure or dissection (High: 56% vs Low: 11%, p < 0.01), lipid pool-like image (High: 47% vs Low: 5%, p < 0.01), and positive remodeling (High: 47% vs Low: 5%, p < 0.01) in the High group. IVUS measurements showed EEM-CSA(High: 25.0 ± 6.2 vs Low: 14.7 ± 3.0 mm², p < 0.01) and plaque-CSA(High: 21.1 ± 5.8 vs Low: 11.3 ± 2.0 mm², p < 0.01) at the lesion site were significantly higher in the High group, but no significant difference was observed for lumen-CSA(**Table 3**)

Myocardial SPECT findings

 201 TICl or 99 mTc-MIBI total defect score(High: 14.5 ± 6.6 vs Low: 9.9 ± 5.3 points, p < 0.05)was significantly higher in the High group. There was no difference in 123 I-BMIPP total defect score (High: 18.3 ± 5.5 vs Low: 17.3 ± 6.3 points). On the other hand, mismatch of total defect score (High: 3.8 ± 3.9 vs Low: 7.7 ± 4.2 points, p < 0.05)was significantly lower in the High group (**Table 4**).

Regional wall motion finding and incidence of Q-wave in electrocardiogram 2 months after the onset of acute myocardial infarction

The difference in regional wall motion (SD/chord) from the acute to chronic phase (High: 0.20 ± 0.31 vs Low: 0.38 ± 0.33 SD/chord, p < 0.05) was significantly lower in the High group. The High group had a significantly higher incidence of patients (High: 68% vs Low: 43%, p < 0.05) with Q-wave in the electrocardiogram 2 months after the onset of acute myocardial infarction (Table 5).

DISCUSSION

Achievement of TIMI 3 flow in reperfusion therapy by PCI for acute myocardial infarction is an important factor for prognosis¹⁹). However,

Table 2 Angiographical characteristics and strategy for stenting

	High group $(n = 34)$	Low group $(n = 37)$	p value
Target vessel			
Left anterior descending artery	18(53)	22(59)	NS
Right coronary artery	16(47)	15(41)	NS
Extent of coronary artery disease			
One-vessel disease	22(65)	25(68)	NS
Two-vessel disease	7(20)	7(19)	NS
Three-vessel disease	5(15)	5(13)	NS
Collateral flow grade at baseline coronary angiography			
Grade 0	19(56)	21(57)	NS
Grade 1	13(38)	15(40)	NS
Grade 2	2(6)	1(3)	NS
Grade 3	0	0	NS
TIMI flow grade at baseline coronary angiography			
TIMI 0	21(62)	22(59)	NS
TIMI 1	4(12)	7(19)	
TIMI 2	9(26)	8(22)	
TIMI 3	0	0	
TIMI flow grade at final coronary angiography			
TIMI 0	0	0	NS
TIMI 1	0	0	
TIMI 2	4(12)	1(3)	
TIMI 3	30(88)	36(97)	
Ejection fraction at acute phase(%)	53.7 ± 12.7	53.5 ± 12.4	NS
Strategy for stenting			
Stent size(mm)	3.9 ± 0.4	3.2 ± 0.3	< 0.01
Stent length(mm)	18.4 ± 4.0	18.9 ± 4.7	NS
Maximum inflation pressure(atm)	15.6 ± 2.8	14.1 ± 2.8	< 0.05

Continuous values are mean \pm SD. (): %. Explanation of the groups as in Table1.

although the current achievement rate of TIMI 3 flow in coronary angiography after PCI is about 80 - 90%, the achievement of good flow on the microcirculation level is only 20 - 30% ^{20,21}). Therefore, new methods to replace TIMI flow grade in the assessment of myocardial reperfusion are currently under study. The myocardial blush grade²² and TIMI myocardial perfusion grade²³ are being used in coronary angiography.

Myocardial scintigraphy is an effective method to assess damage of the microcirculation²⁴). In this study, the mismatch between fatty acid metabolic agents and perfusion agents in myocardial SPECT was used to assess myocardial salvage by PCI. This mismatch is distinctly observed in the acute to sub-

acute period following reperfusion therapy in patients with myocardial infarction. The mismatch area reflects the area of myocardial salvage achieved through reperfusion therapy^{25,26}). The myocardial infarct size (risk area)at the time of the onset of infarct can be estimated indirectly from the defect area of fatty acid metabolic agents in the subacute phase^{27,28}).

The two groups in this study showed no difference in the total defect score of fatty acid metabolic agents in the subacute phase, suggesting that no significant difference was present in the risk area. On the other hand, the mismatch in total defect score of the fatty acid metabolic agent and perfusion agent was significantly lower in patients with

TIMI = Thrombolysis in Myocardial Infarction.

Table 3 Intravascular ultrasound findings

	High group $(n = 34)$	Low group $(n = 37)$	p value
Intravascular ultrasound lesion morphology			
Fissure/dissection	19(56)	4(11)	< 0.01
Lipid pool-like image	16(47)	2(5)	< 0.01
Superficial calcium	13(38)	18(49)	NS
Positive remodeling	16(47)	2(5)	< 0.01
Intravascular ultrasound measurements			
Reference proximal site			
EEM-CSA(mm ²)	22.5 ± 5.8	16.6 ± 3.2	< 0.01
Lumen-CSA(mm ²)	11.2 ± 3.4	8.3 ± 2.3	< 0.01
Plaque-CSA(mm ²)	11.2 ± 4.2	8.2 ± 1.6	< 0.01
Lesion site			
EEM-CSA(mm ²)	25.0 ± 6.2	14.7 ± 3.0	< 0.01
Lumen-CSA(mm ²)	3.9 ± 1.2	3.4 ± 0.9	NS
Plaque-CSA(mm ²)	21.1 ± 5.8	11.3 ± 2.0	< 0.01
Reference distal site			
EEM-CSA(mm ²)	17.5 ± 4.4	12.2 ± 3.3	< 0.01
Lumen-CSA(mm ²)	8.6 ± 2.7	5.9 ± 2.0	< 0.01
Plaque-CSA(mm ²)	8.9 ± 3.2	6.3 ± 2.4	< 0.01

Continuous values are mean \pm SD. (): %.

Explanation of the groups as in Table 1.

EEM = external elastic membrane; CSA = cross-sectional area.

Table 4 Myocardial single photon emission computed tomography findings

	High group $(n = 34)$	Low group (<i>n</i> = 37)	p value
Total defect score of ²⁰¹ TICI or ^{99m} Tc-MIBI(point)	14.5 ± 6.6	9.9 ± 5.3	< 0.05
Total defect score of 123 I-BMIPP(point)	18.3 ± 5.5	17.3 ± 6.3	NS
Mismatch of total defect score(point)	3.8 ± 3.9	7.7 ± 4.2	< 0.05

Values are mean \pm SD.

Explanation of the groups as in Table 1.

 99m Tc-MIBI = 99m Tc-sestamibi ; 123 I-BMIPP = 123 I-15(p-iodophenyl) 3(R, -S)-methylpentadecanoic acid.

Table 5 Regional wall motion finding in left ventriculography and incidence of Q-wave in electrocardiogram 2 months after the onset of acute myocardial infarction

	High group $(n = 34)$	Low group (<i>n</i> = 37)	p value
Regional wall motion(SD/chord)			
Acute phase	-1.65 ± 0.55	-1.79 ± 0.46	NS
Chronic phase	-1.45 ± 0.45	-1.41 ± 0.39	NS
Difference in regional wall motion(SD/chord)	0.20 ± 0.31	0.38 ± 0.33	< 0.05
Q-wave in electrocardiogram 2 months after onset	23(68%)	16(43%)	< 0.05

Difference of regional wall motion was calculated as regional wall motion at chronic phase minus regional wall motion in the acute phase.

Continuous values are mean \pm SD.

Explanation of the groups as in Table 1.

high lesion EEM-CSA. Therefore, we infer that in stenting after thrombectomy, there is less reperfusion on the microcirculation level in patients with high EEM-CSA.

In addition, the high lesion EEM-CSA group of patients had a lower degree of improvement of local wall motion in the infarct area from the acute to chronic phases compared to the low group and also had a high ratio of Q-wave myocardial infarction in 2 month after the onset. The area of mismatch reflects stunned myocardium and shows an improvement over time in wall motion^{18,29}). There were no significant differences between the two groups in SPECT observed risk area, onset to recanalization time, TIMI flow grade and collateral grade at baseline coronary angiography, or pharmacologic agents used after the procedure. This leads us to believe that the difference in myocardial salvage effects by PCI was reflected in the degree of improvement in wall motion in the chronic phase.

IVUS of the culprit lesion morphology found higher incidence of fissure or dissection and lipid pool-like images in patients with high lesion EEM-CSA. Other than thrombus, the significant factor for microvascular embolization in patients with acute myocardial infarction is the plaque constituents that accompany plaque rupture³⁰⁻³²). In addition, culprit lesions in large vessels that have lipid pool-like images or ruptured plaque contain a large lipid core and plaque gruel at the lesion site. Thus, severe microvascular embolization occurs in many patients caused by the large amounts of plaque crushed during the PCI procedure 12,33 · 35). Therefore, regardless of aspiration of thrombus by thrombectomy, subsequent PCI would cause more serious microvascular embolization of plaque debris, leading to less benefit for myocardial salvage in patients with high lesion EEM-CSA.

The use of embolic protection devices has been considered as a method to prevent microvascular embolization by plaque debris or thrombus. In Japan, the Guardwire PlusTM (Medtronic Co. Ltd.) can be used as an embolic protection device, but the efficacy was not demonstrated in the Enhanced Myocardial Efficacy and Recovery by Aspiration of Liberated Debris EMERALD trial, a prospective randomized controlled trial for patients with acute myocardial infarction³⁶). However, the Guardwire PlusTM is effective, for saphenous vein grafts and for acute myocardial infarction culprit lesions identified by angioscopy as ruptured plaque with large amounts of plaque debris at the lesion site^{35,37}). As culprit lesions in large vessels have similar lesion characteristics, we believe that the Guardwire PlusTM can contribute to the achievement of good reperfusion in such patients by effectively preventing distal embolization.

Study limitations

This study was a non-randomized retrospective single-center trial, with subjects limited to those who underwent IVUS. A larger prospective multicenter investigation is necessary.

CONCLUSIONS

Patients with stenting after thrombectomy for acute myocardial infarction and a high culprit lesion vessel area show less benefit in myocardial salvage assessed by myocardial single photon emission computed tomography. The adjunctive use of embolic protection devices for culprit lesions in large vessels should be assessed to achieve optimal reperfusion on the microcirculation level.

要 約

急性心筋梗塞に対する血栓吸引術後ステント植え込み術における病変部位の 血管面積と心筋 Single Photon Emission Computed Tomography からみた

心筋サルベージ効果の関係

中野 雅嗣 我妻 賢司 佐藤 秀之 新居 秀郎 天野 英夫 戸田 幹人 山科 昌平 山崎 純一

目 的: 急性心筋梗塞に対する血栓吸引術後ステント植え込み術における病変部位の血管面積と心筋 single photon emission computed tomography(SPECT)からみた心筋サルベージ効果の関係を検討する.

方 法: 急性心筋梗塞と診断され血栓吸引術後ステント植え込み術を施行した症例のうち,吸引術後血管内心エコー法(IVUS)を施行しえた71症例を対象とした.さらに病変部位 external elastic membrane cross-sectional area(EEM-CSA) 18 mm²の高値群(34例)と EEM-CSA < 18 mm²の低値群(37例)の2群に分け比較検討した.心筋 SPECT は血流 SPECT(201TI または 99mTc-MIBI)と 123I-BMIPP の2核種を撮像した.さらに撮像画像の左室心筋を17分割し,5段階評価(0: 正常から4: 欠損)を用いて総欠損スコアを算出した.また,血流 SPECT と 123I-BMIPP の総欠損スコアの差を集積乖離と定義した.

結 果: IVUS からみた病変血管形態の比較において脂質プール様イメージング(47% vs 5% , p<0.01)は高値群に高率に認められた.心筋 SPECT の検討結果において 123 I-BMIPP の総欠損スコアに 差はなかったが(18.3 ± 5.5 vs 17.3 ± 6.3 point),血流シンチグラフィーと 123 I-BMIPP との総欠損スコアの集積乖離は EEM-CSA 高値群が有意に低値を示した(3.8 ± 3.9 vs 7.7 ± 4.2 point , p<0.05).

結論:急性心筋梗塞に対する血栓吸引術後ステント植え込み術においてIVUSからみた病変血管面積の高値例は,低値例に比べ心筋SPECTからみた心筋サルベージ効果が劣る.

-J Cardiol 2006 Mar; 47(3): 123 - 131 -

References

- Mastumura K, Jeremy RW, Schaper J, Becker LC: Progression of myocardial necrosis during reperfusion of ischemic myocardium. Circulation 1998; 97: 795 - 804
- 2) Ito H, Maruyama A, Iwakura K, Takiuchi S, Masuyama T, Hori M, Higashino Y, Fujii K, Minamino T: Clinical implications of the 'no reflow 'phenomenon: A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation 1996; 93: 223 - 228
- 3) Reffelmann T, Hale SL, Dow JS, Kloner RA: No-reflow phenomenon persists long-term after ischemia/reperfusion in the rat and predicts infarct expansion. Circulation 2003; 108: 2911 - 2917
- 4) Rezkalla SH, Kloner RA: No-reflow phenomenon. Circulation 2002; 105: 656-662
- 5) Jo K, Nakamura Y, Inoue T, Fukushima K, Takeda R, Miyazaki A: The impact of thrombectomy with a thrombuster catheter on left ventricular function in patients with acute myocardial infarction. Jpn J Interv Cardiol 2005; 20: 211 216 (in Jpn with Eng abstr)
- 6) Singh M, Tiede DJ, Mathew V, Garratt KN, Lennon RJ, Holmes DR Jr, Rihal CS: Rheolytic thrombectomy with Angiojet in thrombus-containing lesions. Cathet Cardiovasc Interv 2002; 56: 1 - 7
- 7) Nakano M, Muramatsu T, Tukahara R, Ito Y, Hirano K, Matsushita M, Ishimori H, Nishimura S: The efficacy of stent implantation while using PercuSurge in acute myocardial infarction: A comparison with thrombectomy using The RESCUE Catheter. Jpn J Interv Cardiol 2004; 19: 226-23% in Jpn with Eng abstr)
- 8) Huang Z, Kato O, Nakamura S, Negoro S, Kobayashi T, Tanigawa J: Evaluation of the PercuSurge GuardWire Plus temporary occlusion and aspiration system during primary angioplasty in acute myocardial infarction. Cathet Cardiovasc Intervent 2003; 60: 443 451
- 9) Yip HK, Wu CJ, Chang HW, Fang CY, Yang CH, Chen SM, Hung WC, Chen CJ, Cheng CI, Hsieh YK: Effect of

- the PercuSurge GuardWire device on the integrity of microvasculature and clinical outcomes during primary transradial coronary intervention in acute myocardial infarction. Am J Cardiol 2003; **92**: 1331 1335
- 10) van Ommen V, Michels R, Heymen E, van Asseldonk J, Bonnier H, Vainer J, de Swart H Koolen J: Usefulness of the rescue PT catheter to remove fresh thrombus from coronary arteries and bypass grafts in acute myocardial infarction. Am J Cardiol 2001; 88: 306 - 308
- 11) Silva JA, Ramee SR, Cohen DJ, Carrozza JP, Popma JJ, Lansky AA, Dandreo K, Baim DS, George BS, McCormick DJ, Setum CM, Kuntz RE: Rheolytic thrombectomy during percutaneous revascularization for acute myocardial infarction: Experience with the AngioJet catheter. Am Heart J 2001; 141: 353 - 359
- 12) Tanaka A, Kawarabayashi T, Nishibori Y, Sano T, Nishida Y, Fukuda D, Shimada K, Yoshikawa J: No-reflow phenomenon and lesion morphology in patients with acute myocardial infarction. Circulation 2002; **105**: 2148 2152
- 13) Chesebro JH, Knatterud G, Roberts R, Borer J, Cohen LS, Dalen J, Dodge HT, Francis CK, Hillis D, Ludbrook, Markis JE, Mueller H, Passamani ER, Powers ER, Rao AK, Robertson T, Ross A, Ryan TJ, Sobel BE, Willerson J, Williams DO, Zaret BL, Braunwald E: Thrombolysis in Myocardial Infarctior(TIMI) trial, Phase I: A comparison between intravenous tissue plasminogen activator and intraveneous streptokinase: Clinical findings through hospital discharge. Circulation 1987; 76: 142 154.
- 14) Cohen M, Rentrop KP: Limitation of myocardial ischemia by collateral circulation during sudden controlled coronary artery occlusion in human subject: A prospective study. Circulation 1986; 74: 469 - 476
- 15) Sheehan FH, Bolson EL, Dodge HT, Mathey DG, Schofer J, Woo HW: Advantages and applications of the centerline method for characterizing regional ventricular function. Circulation 1986; 74: 293 - 305
- 16) Mintz GS, Kent KM, Pichard AD, Salter LF, Popma JJ, Leon MB: Contribution of inadequate arterial remodeling to the development of focal coronary artery stenoses: An

- intravascular ultrasound study. Circulation 1997; **95**: 1791 1798
- 17) Akimoto K: Prediction of improvement of left ventricular wall motion in patients with myocardial infarction: By using 99 mTc-tetrofosmin and 123 I-BMIPP myocardial SPECT at subacute phase. Kakuigaku 2000; 37: 291 301 (in Jpn with Eng abstr)
- 18) Nishimura T, Nishimura S, Kajiya T, Sugihara H, Kitahara K, Imai K, Muramastu T, Takahashi N, Yoshida H, Osada T, Terada K, Ito T, Naruse H, Iwabuchi M: Prediction of functional recovery and prognosis in patients with acute myocardial infarction by ¹²³I-BMIPP and 201 Tl myocardial single photon emission computed tomography: A multicenter trial. Ann Nucl Med 1998; 12: 237 248
- 19) Ito H, Okamura A, Iwakura K, Masuyama T, Hori M, Takiuchi S, Negoro S, Nakatsuchi Y, Taniyama Y, Higashino Y, Fujii K, Minamino T: Myocardial perfusion patterns related to thrombolysis in myocardial infarction perfusion grades after coronary angioplasty in patients with acute anterior wall myocardial infarction. Circulation 1996; 93: 1993 1999
- 20) Stone GW, Peterson MA, Lansky AJ, Dangas G, Mehran R, Leon MB: Impact of normalized myocardial perfusion after successful angioplasty in acute myocardial infarction. J Am Coll Cardiol 2002; 39: 591 597
- 21) van t Hof AW, Liem A, de Boer MJ, Zijlstra F, for the Zwolle Myocardial Infarction Study Group: Clinical value of 12-lead electrocardiogram after successful reperfusion therapy for acute myocardial infarction. Lancet 1997; 350: 615-619
- 22) van t Hof AW, Liem A, Suryapranata H, Hoorntje JC, de Boer M-J, Zijlstra F, for the Zwolle Myocardial Infarction Study Group: Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: Myocardial blush grade. Circulation 1998; 97: 2302 2306
- 23) Gibson CM, Cannon CP, Murphy SA, Ryan KA, Mesley R, Marble SJ, McCabe CH, Van De Werf F, Braunwald E: Relationship of TIMI myocardial perfusion grade to mortality afer administration of thrombolytic drugs. Circulation 2000; 101: 125 - 130
- 24) Schofer J, Montz R, Mathey DG: Scintigraphic evidence of the no reflow "phenomenon in human beings after coronary thrombolysis. J Am Coll Cardiol 1985; 5: 593 - 598
- 25) Hashimoto A, Nakata T, Tuchihashi K, Tanaka S, Fujimori K, Imura O: Postischemic functional recovery and BMIPP uptake after primary peructaneous transluminal coronary angioplasty in acute myocardial infarction. Am J Cardiol 1996; 77: 25 30
- 26) Tamaki N, Kawamoto M, Yonekura Y, Fujibayashi Y, Takahashi N, Konishi J, Nohara R, Kambara H, Kawai C, Ikekubo K, Kato H: Regional metabolic abnormality in relation to perfusion and wall motion in patients with myocardial infarction: Assessment with emission tomography using an iodinated branched fatty acid analog. J Nucl Med 1992; 33: 659 667
- 27) Kawai Y, Tsukamoto E, Nozaki Y, Kishino K, Kohya T, Tamaki N: Use of ¹²³I-BMIPP single-photon emission tomography to estimate areas at risk following successful revascularization in patients with acute myocardial infarc-

- tion. Eur J Nucl Med 1998; 25: 1390 1395
- 28) Nakazawa Y, Thara H, Suyama H, Kakio M, Ookami Y Gotou Y, Inoue M, Nakamura T, Masui K, Isoda Y: Evaluation of area at risk by ¹²³I-BMIPP in patients with acute myocardial infarction. Kakuigaku 1996; **33**: 73 76 (in Jpn with Eng abstr)
- 29) Ito T, Tanouchi J, Kato J, Morioka T, Nishino M, Iwai K, Tanahashi H, Yamada Y, Hori M, Kamada T: Recovery of impaired left ventricular function in patients with acute myocardial infarction is predicted by the discordance in defect size on ¹²³I-BMIPP and ²⁰¹TI SPECT images. Eur J Nucl Med 1996; 23: 917 923
- 30) Topol EJ, Yadav JS: Recognition of the importance embolization in atherosclerotic vascular disease. Circulation 2000; 101: 570 - 580
- 31) Bonderman D, Teml A, Jacowitsch J, Adlbrecht C, GyongyosiM, Sperker W, Lass H, Mosgoeller W, Glogar DH, Probst P, Maurer G, Nemerson Y, Land LM: Coronary no-reflow is caused by shedding of active tissue factor from dissected atherosclerotic plaque. Blood 2002; 99: 2794 2800
- 32) Kotani J, Nanto S, Mintz GS, Kitakaze M, Ohara T, Morozumi T, Nagata S, Hori M: Plaque gruel of atheromatous coronary lesion may contribute to the no-reflow phenomenon in patients with acute coronary syndrome. Circulation 2002; 106: 1672 - 1677
- 33) Sato H, Iida H, Tanaka A, Tanaka H, Shimodouzono S, Uchida E, Kawarabayashi T, Yoshikawa J: The decrease of plaque volume during percutaneous coronary intervention has a negative impact on coronary flow in acute myocardial infarction: A major role of percutaneous coronary intervention-induced embolization. J Am Coll Cardiol 2004: 44: 300 - 304
- 34) Hayashi T, Kiyoshima T, Matsuura M, Ueno M, Kobayashi M, Yabushita H, Kurooka A, Taniguchi M, Miyataka M, Kimura A, Iishikawa K: Plaque erosion in the culprit lesion is prone to develop a smaller myocardial infarction size compared with plaque rupture. Am Heart J 2005; 149: 284 290
- 35) Mizote I, Ueda Y, Ohtani T, Shimizu M, Takeda Y, Oka T, Tsujimoto M, Hirayama A, Hori M, Kodama K: Distal protection improved reperfusion and reduced left ventricular dysfunction in patients with acute myocardial infarction who had angioscopically defined ruptured plaque. Circulation 2005; 112: 1001 1007
- 36) Stone GW, Webb J, Cox DA, Brodie BR, Qureshi M, Kalynych A, Turco M, Schultheiss HP, Dulas D, Rutherford BD, Antoniucci D, Krucoff MW, Gibbons RJ, Jones D, Lansky AJ, Mehran R: Distal microcirculatory protection during percutaneous coronary intervention in acute ST-segment elevation myocardial infarction: A randomized controlled trial. JAMA 2005; 293: 1063 1072
- 37) Baim D, Wahr D, George B, Leon MB, Greenberg J, Cutlip DE, Kaya U, Popma JJ, Ho KKL, Kuntz RE, for the Saphenous vein graft Angioplasty Free of Emboli Randomized (SAFER) Trial Investigators: Randomized trial of a distal embolic protection device during percutaneous intervention of saphenous vein aorto-coronary bypass grafts. Circulation 2002; 105: 1285 1290