急性心筋梗塞責任冠動脈の左回旋 枝と右冠動脈との心電図鑑別法: 誘導と誘導のST上昇度の比較

Electrocardiographic Discrimination of Infarct-Related Artery Between Left Circumflex and Right Coronary Artery: Comparison of ST Elevation Between Leads and

三角	郁夫*	Ikuo	MISUMI, MD^*
庄野	弘幸	Hiroyuki	SHONO, MD
中尾	浩一	Koichi	NAKAO, MD
松田	宏史	Hirofumi	MATSUDA, MD
堀内	取一 貝—	Kenji	HORIUCHI, MD
本田	香	Takashi	HONDA, MD,

Abstract

Objectives. Admission electrocardiography was evaluated to discriminate left circumflex artery(LCX) versus right coronary artery(RCA) as the cause of acute myocardial infarction.

Methods. Electrocardiographic findings were assessed in patients with RCA(n = 60) and LCX(n = 60) occlusion.

Results. ST segment elevation in the inferior leads or right precordial leads was more common in the RCA group. ST segment depression or negative T wave was more common in leads _, a _L in the RCA group. ST segment elevation was more common in leads _5, _6 in the LCX group. ST segment was elevated in inferior leads in 55 patients in the RCA group and 27 patients in the LCX group. Mean ST level was higher in lead than in lead in the RCA group, but not in the LCX group. The ST level was higher in lead than in lead in 78% of the RCA group, but only 44% of the LCX group(p < 0.01)

Conclusions. Comparison of ST levels between leads and , and a three-dimensional analysis in 12-lead electrocardiography is useful for discriminating the left circumflex artery from the right coronary artery as the cause of acute myocardial infarction.

J Cardiol 2003 Jun; 41(6): 271 - 276

Key Words

Myocardial infarction, pathophysiologyDiagnostic techniques

はじめに

急性心筋梗塞における責任冠動脈の同定は,重症度 診断および治療法選択のうえで重要である.責任冠動 脈は冠動脈造影を行うことで診断できるが,一次救急 の現場では採血と心電図のみで心筋梗塞と診断し,高

■Electrocardiography

次の病院へ救急車で搬送する場合がある.また,高齢 者や腎機能障害のある例などで冠動脈造影を行わない 場合がある.そのようなとき,心電図所見が責任冠動 脈の同定に重要となってくる.

12誘導心電図では責任冠動脈同定はある程度可能 であるが¹⁾,右冠動脈と左回旋枝はいずれも下壁誘導

済生会熊本病院心臓血管センター 内科:〒861-4193 熊本県熊本市近見5-3-1;*(現)荒尾市民病院 循環器科:〒864-0041 熊本県荒尾市荒尾2600

Division of Internal Medicine, Cardiovascular Center, Saiseikai Kumamoto Hospital, Kumamoto; *(present Division of Cardiology, Arao City Hospital, Kumamoto

Address for correspondence: HONDA T, MD, FJCC, Division of Internal Medicine Cardiovascular Center, Saiseikai Kumamoto Hospital, Chikami 5 - 3 - 1, Kumamoto, Kumamoto 861 - 4193

Manuscript received January 9, 2003; revised March 7, 2003; accepted March 17, 2003

	Infarct-related coronary artery			
	RCA group $(n = 60)$	LCX group $(n = 60)$	<i>p</i> value	
Age(yr, mean ± SD)	63.3 ± 12.4	67.1 ± 10.9	NS	
Male	53(88)	43(72)	< 0.05	
Total occlusion of IRCA	38(63)	35(58)	NS	
ST in , , a F	55(92)	2(45)	< 0.0001	
ST in , , a F	2(3)	17(28)	< 0.0001	
ST in 5, 6	10(17)	25(42)	< 0.01	
ST in , a L	1(2)	5(8)	NS	
ST or negative T wave in , a \perp	49(82)	15(25)	< 0.0001	
ST in 2- 5	29(48)	38(63)	NS	
R/S ratio > 1 in $_1$	3(5)	3(5)	NS	
ST in right precordial leads	28/54(52)	1/45(2)	< 0.0001	

Table 1	ST segment deviation in patients with acute myocardial infarction due to right coronary			
artery or left circumflex artery occlusion				

(): %.

ST in , a F and right precordial leads, and ST in , a L were more common in the RCA group than in the LCX group.

ST in 5, 6 and ST in , , a F were more common in the LCX group than in the RCA group.

RCA = right coronary artery; LCX = left circumflex artery; IRCA = infarct-related coronary artery; ST = ST segment elevation; ST = ST segment depression.

でST上昇をきたすことが多く,鑑別が困難なことが ある²⁾.しかし,右冠動脈の閉塞による心筋梗塞では, 右室梗塞や洞徐脈,完全房室ブロックなどの合併症を きたすことがあり,早期に診断できれば対応も容易と なる.本研究では,右冠動脈と左回旋枝での心電図所 見の違いについて検討を行った.

対象と方法

1. 対 象

当院に初回急性心筋梗塞で入院となり,緊急冠動脈 造影で梗塞責任冠動脈が右冠動脈で,他の冠動脈に有 意狭窄が認められなかった連続60例(男性53例,女 性7例,平均年齢63.3 ± 12.4歳;右冠動脈群),およ び梗塞責任冠動脈が左回旋枝で,他の冠動脈に有意狭 窄が認められなかった連続60例(男性43例,女性17 例,平均年齢67.1 ± 10.9歳;左回旋枝群)を対象とし た(Table 1).

2. 方 法

当院緊急入院時の12誘導心電図でSTが偏位した部 位を調べ,責任冠動脈での比較を行った.STの偏位 については,下壁,,a,F誘導,側壁,s,。) 誘導,右側胸部誘導,鏡面像である高位側壁(, a L)誘導と,前壁(2-5)誘導において検討した. また, 1誘導でのR/S比>1についても検討した.つ ぎに,下壁誘導でST上昇を呈した症例についてのみ 以下の検討を行った.まず 誘導と 誘導でのST値 を測定し,右冠動脈群,左回旋枝群でそれぞれ比較し た.また,それぞれの群で 誘導のほうが 誘導より もST値が高い割合を検討した.例えば,Fig.1に示す 症例では, 誘導のST値が0.4mVで 誘導のST値が 0.55mVであることから,ST値は 誘導のほうが高い ことになる.

年齢などの数値は平均±標準偏差で表した.統計的 手法は,2群間で数値の平均値の差を求める場合は対応のないt検定を使用し,事象の有無について比較す る場合は,²検定を用いた.p<0.05を有意差の判定 とした.

結 果

1. 全症例における ST 偏位について (Table 1)

120 例のうち,緊急冠動脈造影で梗塞責任冠動脈が 完全閉塞していたのは右冠動脈群38 例,左回旋枝群 35 例であった.心電図所見では,下壁(,,,

ST↓in I,aVL <u>*RCA*</u>

ST † in V 5, V 6

LCX

ST↓in V2-V5 <u>RCA≑LCX</u>

LV

ST↑in II,III,aVF:<u>*RCA, LCX*</u> ST↓in II,III,aVF:*LCX*

ST segment elevation was common in the right precordial leads and leads , , a F, and ST segment depression in , a L in the RCA group. ST segment elevation was observed in leads $_{5, 6}$ in the LCX group. ST

segment depression in leads 2 - 5 was similar in both

Fig. 2 ST segment deviations in all 120 cases

Fig. 1 ST segment elevation in leads and in a patient ST segment was 0.15 mV higher in lead (0.55 mV) than lead (0.4 mV)

a F 誘導でST上昇が認められた割合は右冠動脈群の ほうが多かった(右冠動脈群92%,左回旋枝群45%, p < 0.0001).逆に,ST低下は左回旋枝群のほうが多 く(右冠動脈群3%,左回旋枝群28%,p < 0.0001), 5,。誘導でST上昇が認められた症例数も左回旋枝 群のほうが多かった(右冠動脈群17%,左回旋枝群 42%,p < 0.01).2-5誘導のST低下は,両群間で 差はなく(右冠動脈群48%,左回旋枝群63%),1誘 導でのR/S比>1である症例数は両群とも5%と少数 であった.,aL誘導では,ST上昇例は少なかった (右冠動脈群2%,左回旋枝群8%)が,ST低下もし くは陰性T波の例は右冠動脈群で多かった(右冠動脈 群82%,左回旋枝群25%,p < 0.0001).

右側胸部誘導は右冠動脈群の54例,左回旋枝群の45例に記録されていたが,この誘導でのST上昇例は, 右冠動脈群が多かった(右冠動脈群52%,左回旋枝群2%,p<0.0001).

以上のことから, Fig. 2に示すようなことがいえる. すなわち,右冠動脈群の特徴として下壁誘導でST上 昇がみられ, ,a L誘導でST低下もしくは陰性T

がなくみられた.

groups.

ST 1 in right

RCA

precordial leads

2. 下壁誘導でST上昇例の検討(Table 2)

つぎに,120例のうち,下壁(,, , a F)誘導で ST上昇が認められた82例(右冠動脈群55例,左回旋 枝群27例)について検討を行った.

誘導と 誘導のST上昇度の比較では,右冠動脈 群では 誘導のほうが 誘導よりも高値であった(誘導0.19 ± 0.15 mV vs 誘導0.29 ± 0.24 mV, p < 0.0001)が,左回旋枝群では差がなかった(誘導 0.15 ± 0.08 mV vs 誘導0.16 ± 0.10 mV).

また, 誘導でのST上昇度から 誘導でのST上昇 度を引いた値が+となったのは,右冠動脈群で多かっ た(右冠動脈群78% vs左回旋枝群44%, *p* < 0.01; **Fig. 3**).

つぎに 5, 6誘導のST上昇が認められた例は, 左回旋枝群で多かった(右冠動脈群16%, 左回旋枝群 70%, p < 0.0001).前胸部(2-5)誘導でのST低下 は両群間で差はなく(右冠動脈群51%, 左回旋枝群

	Infarct-related	Infarct-related coronary artery	
	RCA group (<i>n</i> = 55)	LCX group (<i>n</i> = 27)	<i>p</i> value
Age(yr, mean ± SD)	62.9 ± 12.4	66.8 ± 10.8	NS
Male	49(89)	17(63)	< 0.01
ST segment deviation in and (mV, mea	ın ± SD)		
	$0.19 \pm 0.15^*$	0.15 ± 0.08	
	0.29 ± 0.24	0.16 ± 0.10	
ST in 5, 6	9(16)	19(70)	< 0.0001
ST or negative T wave in , a L	28(51)	1(4)	< 0.001
ST in 2- 5	28(51)	18(67)	NS
$R/S > 1$ in _1	3(5)	1(4)	NS
ST in right precordial leads	28/49(57)	1/19(5)	< 0.0001

Table 2 ST segmen	t deviation in	patients with ST	' segment elevation in leads	,	, a	F
-------------------	----------------	------------------	------------------------------	---	-----	---

(): %.

ST level was higher in lead than in lead in the RCA group, but there was no difference in the LCX group.

ST in 5, 6 was more common in the LCX group than in the RCA group.

ST in the right precordial leads was more common in the RCA group than in the LCX group.

Abbreviations as in Table 1.

p < 0.0001, comparison of ST levels between and .

Fig. 3 ST segment deviations in the RCA and LCX groups More patients with ST segment elevation in the inferior leads(82 patients)had higher ST levels in lead than in lead in the RCA group(78%)than in the LCX group (44%).

Abbreviations as in Table 1.

67%), 1誘導の R/S 比 > 1を示した例は両群とも少数であった(右冠動脈群5%,左回旋枝群4%).右側胸部誘導での ST 上昇を示した例は,右冠動脈群で多かった(右冠動脈群57%,左回旋枝群5%,p < 0.0001). また,高位側壁(,a L)での ST 低下もしくは陰性T 波も,右冠動脈群で多かった(右冠動脈群51%,左回旋枝群4%,p < 0.0001).

以上の結果をFig.4に示す.すなわち,下壁(,,

, a F)誘導でST上昇を呈する症例の中で,右冠動 脈群は右側胸部誘導, 誘導より 誘導のほうがST 値が高値であった.鏡面像としては, 2- ₅誘導で ST低下もしくは陰性T波がみられた.また,左回旋 枝群の特徴としては, 誘導と 誘導でST上昇は同 程度であり,側壁の ₅, ₅誘導でST上昇例が多かっ た.

Fig. 4 ST segment deviations in 82 patients with ST segment elevation in leads , , a F
ST segment elevation was common in the right precordial leads and in leads > , and ST segment depression was observed in , a L in the RCA group. ST segment elevation was observed in leads , and in 5, 6 in the LCX group. ST segment depression in leads 2- 5 was similar in both groups. Abbreviations as in Table 1, Fig. 2.

考 案

下壁誘導でのST上昇は,右冠動脈群の92%,左回 旋枝群の45%でみられた.左回旋枝が責任冠動脈の 場合は,下壁誘導でST変化が明らかでない症例があ ることを念頭におく必要がある.

前胸部誘導のST低下と,」誘導のR/S比>1は, 後壁梗塞の所見とされるが,今回の研究では,両群間 でいずれも差がなかった.これは右冠動脈群でもかな りの症例で後壁を灌流していたためと,後壁側にまだ Q波が形成されていなかったためと考えられる³⁾. 側壁(5, 6)誘導は,左回旋枝群でST上昇がみられることが多かった.Bairey 6⁴⁾も,下壁誘導でのST 上昇に加え, 5, 6, a LなどでのST上昇があれば 左回旋枝の可能性が高いと報告している.また,高位 側壁(, a L)誘導のST低下については右冠動脈群 が多かった.高位側壁は下壁と対側にあるため,鏡面 像として出現しやすかったと考えられた(Fig. 2).右 側胸部誘導のST上昇は右冠動脈群で多かったが,こ れは右冠動脈が右室を灌流するためと考えられた⁵⁾.

今回の研究の特徴として,下壁(, , a F)誘導 でST上昇がみられた症例のみを選択して検討を行っ た.その中で 誘導と 誘導のST上昇度を比較した ところ,右冠動脈群では 誘導のほうが 誘導よりも 大きく,左回旋枝群では 誘導と 誘導の間に差はな かった(Table 2).さらに 誘導のほうが 誘導より も大きかった症例の割合は右冠動脈群のほうが多かっ た(Fig. 3).これは, 誘導のベクトルが後壁のほう へ, 誘導のベクトルが下壁のほうへ向いているため と考えられる.その他の心電図所見は全症例での比較 と同様の結果であった.

結 論

以上の結果を立体的に図にするとFigs.2,4のよう な結果となった.この心電図パターンを記憶しておけ ば,今後,12誘導心電図所見を立体的に考えること ができ,責任冠動脈の鑑別に有用であると考えられ報 告した.

要

目的と方法:急性心筋梗塞における梗塞責任冠動脈が右冠動脈か左回旋枝かの違いを,右冠動脈 群60例と左回旋枝群60例において急性期心電図所見で検討した.

約-

結 果:下壁誘導および右側胸部誘導でのST上昇は右冠動脈群で多くみられた.高位側壁であ る,aL誘導でのST低下もしくは陰性T波も右冠動脈群で多かった.側壁の,,。誘導でのST 上昇は左回旋枝群で多かった.2-5でのST低下は両群間で差はなかった.さらに下壁誘導でST 上昇のみられた82例(右冠動脈群55例,左回旋枝群27例)について 誘導と 誘導について比較し た.右冠動脈群は 誘導よりも 誘導のST上昇のほうが著明であった.左回旋枝群では 誘導と 誘導の間で差はなかった. 誘導のST上昇> 誘導のST上昇となった例は,右冠動脈群は78% で,左回旋枝群は44%であった(p<0.01).

結 論:入院時の12誘導心電図で 誘導と 誘導のST上昇の比較,およびST偏位の誘導を立体的に考えることで,急性心筋梗塞の責任冠動脈が右冠動脈と左回旋枝の鑑別に有用であると考えられた.

- J Cardiol 2003 Jun; 41(6): 271 - 276 -

文 献

- Blanke H, Cohen M, Schlueter GU, Karsch KR, Rentrop KP: Electrocardiographic and coronary arteriographic correlations during acute myocardial infarction. Am J Cardiol 1984; 54: 249 - 255
- 2) Fuchs RM, Achuff SC, Grunwald L, Yin FC, Griffith LS: Electrocardiographic localization of coronary artery narrowings: Studies during myocardial ischemia and infarction in patients with one-vessel disease. Circulation 1982; 66: 1168 - 1176
- 3) Sclarovsky S, Topaz O, Rechavia E, Strasberg B, Agmon

J: Ischemic ST segment depression in leads 2 - 3 as the presenting electrocardiographic feature of posterolateral wall myocardial infarction. Am Heart J 1987; **113**: 1085 - 1090

- 4) Bairey CN, Shah PK, Lew AS, Hulse S: Electrocardiographic differentiation of occlusion of the left circumflex versus the right coronary artery as a cause of inferior acute myocardial infarction. Am J Cardiol 1987; 60: 456 - 459
- 5) Carson W: Patterns of maximal spatial ST vector of ST segment elevation in the right precordial leads of the electrocardiogram in patients with acute inferior myocardial infarction. Eur Heart J 1988; 9: 962 - 968