Accessory Mitral Valve Associated With Aortic and Mitral Regurgitation and Left Ventricular Outflow Tract Obstruction in an Elderly Patient: A Case Report

Hidekazu TANAKA, MD
Hiroya KAWAI, MD, FJCC
Kazuhiro TATSUMI, MD
Toshiya KATAOKA, MD
Tetsuari ONISHI, MD
Mitsuhiro YOKOYAMA, MD, FJCC
Yutaka OKITA, MD*

Abstract

A 65-year-old man was admitted to our hospital because of exertional dyspnea. Transthoracic and transesophageal echocardiography showed a parachute-like structure measuring 20 × 16 mm, which projected into the left ventricular outflow tract (LVOT) and passed through the aortic valve in systole, and prolapsed back into the left ventricular cavity in diastole. Moderate aortic and mitral regurgitation were also observed, as well as LVOT obstruction with a peak gradient of 30 mmHg. There were no other congenital cardiac abnormalities. In addition, real-time three-dimensional transthoracic echocardiography showed that the parachute-like structure in the LVOT was attached to the anterior mitral leaflet and left ventricular lateral wall by a chorda tendineae-like structure. The diagnosis of accessory mitral valve was based on the echocardiographic characteristics. Surgical treatment was performed because of the presence of accessory mitral valve, moderate aortic and mitral regurgitation, and LVOT obstruction. The postoperative course was uneventful, and the patient has been asymptomatic during a follow-up period of 24 months. Echocardiographic examination proved to be useful for the detection of accessory mitral valve.

Key Words
- Aortic regurgitation
- Mitral regurgitation
- Congenital heart disease (accessory mitral valve)

INTRODUCTION

Accessory mitral valve (AMV) is a congenital anomaly that can lead to left ventricular outflow tract (LVOT) obstruction and is extremely rare in adults. More than half of the cases show other congenital cardiac anomalies.1–4) This report concerns a 65-year-old man who had AMV associated with LVOT obstruction, significant aortic regurgitation (AR) and mitral regurgitation (MR). Surgical treatment was successful and echocardiographic examination proved to be useful for the detection of AMV.
CASE REPORT

A 65-year-old man was admitted to our hospital because of exertional dyspnea. Electrocardiography had shown an abnormality 7 years previously, which had not been identified. Physical examination found his blood pressure was 148/72 mmHg and pulse regular at 72 beats/min. A Levine to-and-fro type heart murmur was detected at the left sternal border in the third intercostal space. Laboratory test results were normal except for brain natriuretic peptide level (120 pg/ml). Chest radiography indicated a cardiothoracic ratio of 62% and enlargement of the left ventricle, and electrocardiography (Fig. 1) showed complete left bundle-branch block. Transthoracic echocardiography (Fig. 2) showed a string-like abnormal structure in the LVOT, moderate AR and MR, and mild LVOT obstruction with a peak gradient of 30 mmHg.

LV = left ventricle; LA = left atrium; Ao = aorta.

Fig. 1 Electrocardiogram

String-like abnormal structure was visible in the left ventricular outflow tract (arrow), with moderate mitral regurgitation (B) and aortic regurgitation (C). Mild left ventricular outflow tract obstruction was present with a peak gradient of 30 mmHg.

LV = left ventricle; LA = left atrium; Ao = aorta.

Fig. 2 Transthoracic echocardiograms
obstruction with a peak gradient of 30 mmHg. The end-diastolic and end-systolic diameters of the left ventricle were 59 mm and 40 mm, respectively, and the left ventricular ejection fraction was 54%.

Transesophageal echocardiography (Fig. 3) indicated that a parachute-like structure measuring 20×16 mm projected into the left ventricular outflow tract and through the aortic valve in systole (A) and prolapsed back into the left ventricular cavity in diastole (B). Moderate aortic regurgitation (C) and mitral regurgitation (D).

Abbreviations as in Fig. 2.

At surgery, the mass was confirmed to be a parachute-like structure attached to the lateral site of the anterior mitral leaflet and left ventricular lateral wall by a chordae tendineae-like structure and tethered to the anterior mitral leaflet. The mass was removed without complications by aortotomy, and gross examination (Fig. 5A) indicated a smooth and valvular leaflet-like structure. Because of the thickened aortic valves and enlarged fenestrations of the left coronary cusp, the aortic valve was replaced with a 23 mm Carpentier-Edwards valve.

Coronary angiography showed no significant stenosis. The patient’s AR was Sellers grade III, and pulmonary capillary wedge pressure, pulmonary blood pressure, and cardiac index were 9 mmHg, 29/6 mmHg, and 3.78 l/min/m2, respectively. Left ventriculography was not performed because of the presence of the abnormal tissue in the LVOT. Surgical treatment was recommended because of the presence of AMV, and significant AR, MR, and LVOT obstruction.

At surgery, the mass was confirmed to be a parachute-like structure attached to the lateral site of the anterior mitral leaflet and left ventricular lateral wall by a chordae tendineae-like structure and tethered to the anterior mitral leaflet. The mass was removed without complications by aortotomy, and gross examination (Fig. 5A) indicated a smooth and valvular leaflet-like structure. Because of the thickened aortic valves and enlarged fenestrations of the left coronary cusp, the aortic valve was replaced with a 23 mm Carpentier-Edwards valve.
The mitral valve was repaired with a 30 mm Physio-ring. Histological examination (Fig. 5B) showed normal mitral valve tissue, leading to a diagnosis of AMV.

After surgery, transthoracic echocardiography demonstrated resolution of the LVOT obstruction and absence of residual AMV, AR and MR. The postoperative course was uneventful, and the patient has been asymptomatic during a follow-up period of 24 months.

DISCUSSION

The present elderly patient with AR, MR, and LVOT obstruction caused by AMV could be successfully treated with surgery. Transthoracic, transesophageal, and real-time three-dimensional transthoracic echocardiography proved to be useful for the detection of AMV.

AMV is an extremely rare congenital cardiac anomaly, which can cause a variety of clinical fea-
Currently, fewer than 100 cases of AMV have been reported, with adults accounting for fewer than 30, since the first description in 1963. AMV has been diagnosed immediately after birth, and in a 77-year-old patient. The mean age at diagnosis is around 6.5 years. Little is known about the etiology and course of AMV. AMV is probably the result of incomplete separation of the mitral valve from the endocardial cushion tissue to the ventricular septum during embryological development. Histological descriptions of tissue specimens in some cases of AMV indicate that about half show normal mitral valve tissue including our patient, and the remainder have fibrous tissue or myxoid dysplasia. AMV is usually more than 70% associated with other congenital cardiac anomalies and often produces significant cardiac symptoms in the neonatal period or early childhood. Ventricular septal anomalies, mainly ventricular septal defect and septal aneurysm, are the most frequently encountered anomalies. Most cases were associated with LVOT obstruction, and about 80% presented severe LVOT obstruction with a peak gradient of more than 50 mmHg. The symptoms in patients with AMV depend on the degree of LVOT obstruction. However, our patient had been asymptomatic until 65 years old. The cause of his exertional dyspnea might be significant AR or MR.

The main indication for surgery for AMV is severe LVOT obstruction, other congenital malformations, or exploration of an intracardiac mass. Early surgical removal is recommended for AMV causing LVOT obstruction because the pressure gradient may increase with age.

References
5) Shone JD, Sellers RD, Anderson RC, Adams P Jr, Lillehei

J Cardiol 2007 Jul; 50(1): 65–70