Successfully Treated Triple Valve Infective Endocarditis: A Case Report

Kenichi SAKAKURA, MD
Norifumi KUBO, MD
Takui KATAYAMA, MD
Tomio UMEMOTO, MD
Satoshi OOSAWA, MD
Seichiro MURATA, MD
Yoshitaka SUGAWARA, MD
Hiroshi FUNAYAMA, MD
Yousuke TAKAGI, MD
Takanori YASU, MD, FJCC
Yoshio TSURUYA, MD
Takashi INO, MD
Muneyasu SAITO, MD, FJCC

Abstract

A 45-year-old woman presented with triple valve infective endocarditis and ventricular septal defect. There were vegetations on the tricuspid valve, pulmonary valve, and aortic valve. She had multiple complications such as nephrotic syndrome, severe anemia, congestive heart failure, and convulsion. Her general condition was extremely poor. Intensive medical therapy, such as blood transfusion, mechanical ventilation, and continuous venovenous hemofiltration, allowed her to tolerate surgery. Triple valve replacement and ventricular septal defect closure was successfully performed without major complication. She was ambulatory at the time of discharge.

Key Words
Endocarditis (infective) Tricuspid valve (triple valve replacement)

INTRODUCTION

Infective endocarditis usually invades one or two valves. We present a case of triple valve infective endocarditis causing vegetations on the tricuspid, pulmonary, and aortic valves, associated with complications such as nephrotic syndrome, severe anemia, and congestive heart failure, which was treated successfully.

CASE REPORT

A 45-year-old woman became aware of leg and facial edema in February 2003, and dyspnea on exertion in March 2003. Her medical history was unremarkable except for a ventricular septal defect (VSD) first identified at the age of 26 years. She had undergone no dental procedures. She was admitted to a local hospital because of congestive heart failure. Although diuretics (furosemide and
spironolactone were administered, her medical condition did not improve. Echocardiography revealed a vegetation on the tricuspid valve. She was referred to our medical center on March 29, 2003.

The patient was 161 cm tall and weighed 69 kg. Her blood pressure was 160/90 mmHg, heart rate was 106 beats/min, and body temperature was 37.3°C. Her general status indicated severe systemic edema. Her palpebral conjunctiva was anemic. She had remarkable decay of the teeth. A grade 4/6 pan-systolic murmur was audible at the second left sternal border and breath sounds were diminished. Her abdomen was severely distended. A complete blood count revealed increased white blood cells and decreased hemoglobin concentration. Blood chemistry revealed hypoalbuminemia (albumin, and renal dysfunction (blood urea nitrogen; creatinine [Table 1]). Urinalysis revealed proteinuria (++) and occult blood (+++). Chest radiography showed cardiomegaly, pulmonary congestion, and bilateral massive pleural effusion (Fig. 1).

Echocardiography demonstrated a VSD (perimembranous defect) and vegetations on the pulmonary and aortic valves as well as the tricuspid valve (Fig. 2). A large vegetation spanned the VSD and the tricuspid valve. M-mode measurements revealed that the left ventricular dimensions at end-diastole and end-systole were 62 and 47 mm, respectively. Doppler imaging revealed moderate aortic regurgitation and moderate tricuspid regurgitation, but the VSD jet was not clearly delineated. The transtricuspid pressure gradient was 45 mmHg. The inferior vena cava was not dilated.

Our initial diagnosis was infective endocarditis, nephrotic syndrome, anemia, and congestive heart failure. Since her general status was too poor for surgery, we began intensive medical therapy. Antibiotics (penicillin G, 24 million units/day and gentamicine sulfate, 60 mg/day) were initiated for infective endocarditis. Albumin concentrate and furosemide were administered for severe edema due to nephrotic syndrome. Blood transfusions were also given for severe anemia. During the antibiotic therapy, blood cultures were examined six times, but all failed to yield bacteria. As the inflammation progressed, other antibiotics (vancomysin and fulconazole) were added.

She suddenly suffered convulsions on April 3, 2003. Following the convulsions, conjugate deviation to the left, anisocoria, and left hemiparesis occurred. She was intubated and emergent brain computed tomography was performed (Fig. 3). Computed tomography found no signs of hemorrhage, or infarction. Her level of consciousness improved and conjugate deviation, anisocoria, and hemiparesis disappeared. Magnetic resonance imaging was performed 2 weeks later also excluded infarction (Fig. 4).

Although she recovered spontaneous respiration, she was placed on a respirator for 6 days because of hypoxia due to congestive heart failure. Large amounts of albumin concentrate and furosemide

Table 1 Laboratory data on admission

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC</td>
<td>14,470/μl</td>
</tr>
<tr>
<td>RBC</td>
<td>198 μl 10^6/μl</td>
</tr>
<tr>
<td>Hb</td>
<td>5.6 g/dl</td>
</tr>
<tr>
<td>Ht</td>
<td>47.1%</td>
</tr>
<tr>
<td>Plt</td>
<td>241 μl 10^6/μl</td>
</tr>
<tr>
<td>T-P</td>
<td>2.1 g/dl</td>
</tr>
<tr>
<td>ALB</td>
<td>0.35 mg/dl</td>
</tr>
<tr>
<td>GOT</td>
<td>17 IU/l</td>
</tr>
<tr>
<td>GPT</td>
<td>10 IU/l</td>
</tr>
<tr>
<td>LDH</td>
<td>352 IU/l</td>
</tr>
<tr>
<td>CPK</td>
<td>34 IU/l</td>
</tr>
<tr>
<td>BUN</td>
<td>47 mg/dl</td>
</tr>
<tr>
<td>Cr</td>
<td>2.13 mg/dl</td>
</tr>
<tr>
<td>T-Cho</td>
<td>169 mg/dl</td>
</tr>
<tr>
<td>Na</td>
<td>139 mEq/l</td>
</tr>
<tr>
<td>K</td>
<td>3.6 mEq/l</td>
</tr>
<tr>
<td>Cl</td>
<td>105 mEq/l</td>
</tr>
<tr>
<td>GLU</td>
<td>113 mg/dl</td>
</tr>
<tr>
<td>CRP</td>
<td>8.26 mg/dl</td>
</tr>
<tr>
<td>PT</td>
<td>13.3 sec</td>
</tr>
<tr>
<td>APTTT</td>
<td>47.6 sec</td>
</tr>
<tr>
<td>AT-3</td>
<td>72%</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>302 mg/dl</td>
</tr>
<tr>
<td>FDP</td>
<td>80.7 μg/ml</td>
</tr>
</tbody>
</table>

Fig. 1 Chest radiograph on admission showing cardiomegaly, pulmonary congestion, and bilateral massive pleural effusion

Fig. 2 Echocardiography demonstrated a VSD (perimembranous defect) and vegetations on the pulmonary and aortic valves as well as the tricuspid valve. A large vegetation spanned the VSD and the tricuspid valve. M-mode measurements revealed that the left ventricular dimensions at end-diastole and end-systole were 62 and 47 mm, respectively. Doppler imaging revealed moderate aortic regurgitation and moderate tricuspid regurgitation, but the VSD jet was not clearly delineated. The transtricuspid pressure gradient was 45 mmHg.

Fig. 3 She suddenly suffered convulsions on April 3, 2003. Following the convulsions, conjugate deviation to the left, anisocoria, and left hemiparesis occurred. She was intubated and emergent brain computed tomography was performed. Computed tomography found no signs of hemorrhage, or infarction. Her level of consciousness improved and conjugate deviation, anisocoria, and hemiparesis disappeared. Magnetic resonance imaging was performed 2 weeks later also excluded infarction.

Fig. 4 Although she recovered spontaneous respiration, she was placed on a respirator for 6 days because of hypoxia due to congestive heart failure. Large amounts of albumin concentrate and furosemide

J Cardiol 2005 Jun; 45 (6) 257–262
were administered intravenously, but her massive edema could not be controlled. Continuous venovenous hemofiltration (CVVH) was initiated, and the massive edema began to disappear. This aggressive medical therapy improved her general status except for the infection. Levels of inflammatory markers still continued to be high despite the administration of many kinds of antibiotics such as penicillin G, gentamicine sulfate, vancomycin, or fulconazole. C-reactive protein level above 10 mg/dl persisted. We decided on surgery to control the infection.

Triple valve replacement and VSD closure were performed on April 18, 2003. The operative findings showed that each cusp of the tricuspid valve was covered with vegetation (Fig. 5). These tricuspid valve vegetations were connected with the vegetations around the VSD. The non-coronary cusp of the aortic valve had a vegetation. The aortic valve vegetation was not connected with the vegetations around the VSD. The right and anterior
cusps of the pulmonary valve also had vegetations. There were no signs of infection around the valvular rings or myocardium. The VSD was closed with a pericardial patch. The aortic and pulmonary valves were replaced with 21 mm mechanical valves and the tricuspid valve was replaced with a 29 mm tissue valve.

Histopathological study found severe cellular infiltration with neutrophils in all three valves, as well as calcification. Culture of the vegetations failed to yield any organism. Her general condition began to improve with post-operative medical management. Complete atrioventricular block emerged after the operation, so a permanent pacemaker was implanted on June 6, 2003. She was ambulatory at the time of discharge.

DISCUSSION

This patient presented with triple valve infective endocarditis complicated by nephrotic syndrome, anemia, congestive heart failure, and convulsions. Combined medical and surgical therapy for infective endocarditis can decrease mortality in patients with congestive heart failure, perivalvular invasive disease and uncontrolled infection. However, her initial general status was so poor that surgical therapy could not be tolerated (her body weight was 69 kg on admission and 40 kg on discharge). Hemodynamic status at the time of operation is the major determinant of operative mortality. Thus, we first aimed to improve her general status with aggressive medical therapy for 20 days prior to surgical therapy.

CVVH was begun to treat her massive edema because conservative treatment such as diuretics and albumin concentrate did not ameliorate her edematous condition. CVVH is a very useful modality for critically ill patients, especially with renal failure. Although congestive heart failure is a controversial indication for CVVH, this procedure dramatically improved her edematous condition.

She did not receive a regular medical check up, so any causality between endocarditis, nephrotic syndrome and severe anemia is difficult to consider. Before discharge, her creatinine level had normalized (0.65 mg/dl), but proteinuria and hematuria were still present. The cause of nephrotic syndrome was difficult to identify without renal biopsy. We suspected glomerulonephritis because she had gross hematuria. The cause of the transient increase of creatinine might be immunoreaction to infective endocarditis, or decrease of renal blood flow due to hypoalbuminemia and congestive heart failure.

Triple valve endocarditis is rare. Our patient was critically ill due to multiple severe complications. However, we could improve her condition for surgery with intensive medical treatment, especially with CVVH.

She suffered convulsion with focal symptom on April 3, 2003. Her focal signs disappeared after several hours. Computed tomography on the next day and magnetic resonance imaging 2 weeks later excluded brain infarction. This transient ischemic attack might have been due to septic embolization from endocarditis.

Transthoracic echocardiography is a highly specific and moderately sensitive modality for the diagnosis of infective endocarditis. Transthoracic echocardiography clearly demonstrated vegetations on the tricuspid, pulmonary, and aortic valves. In our case, VSD might have played a major role in these multiple vegetations. Congenital heart disease is one of the major risk factors for infective endocarditis, and there is an association between infective endocarditis and congenital heart diseases. Interestingly, triple valve endocarditis was associated with VSD.

Since serial blood cultures were sterile, we could not identify the primary causative organism. Furthermore, we were unable to draw blood before the administration of antibiotics. The histological
study found severe cellular infiltration with neutrophils in all three valves, and calcification which suggested bacterial colonies. However, the histological study did not reveal whether these organisms were cocci or rods. Although we could not detect the causative organism, her decayed teeth were supposed to be the infection sources. Decayed teeth and dental procedures are classical incitant factors, and current studies reveal that these factors are still important in Japan.

Triple valve replacement and VSD closure were performed. Although we could manage her massive edema and severe anemia, we could not control the infection in spite of multiple strong antibiotics. The main purpose of surgery was infectious control, which was accomplished without major complications. Complete atrioventricular block emerged after the operation. The tricuspid valve was ravaged by large vegetations and removal of these vegetations might have resulted in damage to the atrioventricular conduction system.

Even triple valve infective endocarditis with severe complications can be treated successfully by the replacement of all three valves.

References

J Cardiol 2005 Jun; 45(6) 257 - 262
nationwide survey. Circ J 2003; 67: 585 - 591

