Exercise-induced precordial ST depression in patients with prior inferior myocardial infarction with single vessel disease

Hajime KATAOKA
Toshitaka OHKUBO*
Kazuhiko NAKAMURA*
Shuji HASHIMOTO*

Summary

We investigated the mechanisms of exercise-induced precordial ST depression in prior inferior myocardial infarction in single vessel disease, and attempted to differentiate ST depression in single vessel from multivessel disease.

Subjects were categorized as; Group I (n=18), with inferior myocardial infarction and single vessel disease without (n=11; Ia) and with (n=7; Ib) exercise-induced precordial ST depression and group II (n=10), inferior myocardial infarction with multivessel disease. The subjects were examined using 12-lead exercise ECG, stress T1-201 myocardial imaging and stress radionuclide ventriculography.

Compared to group Ia, exercise-induced precordial ST depression in group Ib was associated with extensive infarction extending into the inferoseptal left ventricular wall by T1-201 myocardial imaging. Worsening of septal wall motion was also more frequently observed on stress radionuclide ventriculography. For detecting multivessel disease in prior inferior myocardial infarction, exercise ECG and radionuclide ventriculography had poor specificity and predictive value compared to stress T1-201 myocardial imaging.

We conclude that exercise-induced precordial ST depression observed in patients with prior inferior myocardial infarction due to single vessel disease reflects a peri-infarction ischemia in the inferoseptal wall of the left ventricle. Great caution is necessary when predicting multivessel disease in prior inferior myocardial infarction using exercise ECG. Stress T1-201 myocardial imaging is the most accurate diagnostic means for this purpose.

Received for publication February 22, 1988; accepted April 16, 1988 (Ref. No. 35-PS49)
はじめに

初回心筋梗塞後患者における負荷心電図上の非梗塞部 ST 低下は多様病変例に多く、梗塞再発や心室細動、突然死の合併頻度が高いため、予後不良の微候とされている1-3)。我々は、初回心筋梗塞患者の運動負荷12誘導心電図では、前胸部 V₁-V₄ 誘導での ST 下低下する症例を指摘した。急性下壁梗塞後の前胸部 ST 低下に関する研究は従来数多くみられ、下壁梗塞の慢性期における負荷心電図上での ST 低下についての研究は少ない。一方、核医学的手法としての thallium (TI)-201 心筋イメージならびに心肺シミュレーションは、虚血性心筋の許容判定、負荷に伴う可逆性心筋虚血の存在を診断するに高い評価を有する。これらの点から、我々の研究では、初回心筋梗塞患者の運動負荷心電図でみられる前胸部 ST 低下の機序について、核医学的手法と対比しつつ分析を加えるとともに、かかる症例と多肢病変下壁梗塞との心電図学的、核医学的鑑別点について検討した。

対象および方法

研究対象を運動負荷の終点を Table 1 に示す。対象は、診断時に、血清酵素値の変動、選択的冠動脈造影にて診断の確定した右冠動脈病変による初回下壁梗塞症例である。安静時誘導心電図上、すでに前胸部 V₁-V₄ 誘導の ST-T 变化を有する症例、伝導障害を有する症例、左室あるいは右室肥大症例は除外した。冠動脈造影所見と負荷心電図の前胸部 ST 低下の有無により、対象を以下に述べる 3 群に分類した。

すなわち、一枝病変下壁梗塞で、負荷心電図上、前胸部 ST 低下のない 11 例 (Ia 群)、前胸部 ST 低下を示す 7 例 (Ib 群)、ならびに多枝病変下壁梗塞の 10 例 (II 群) である。II 群は全例、左前下行枝病変を有し、2肢病変 7 例、3肢病変 3 例であった。II 群のうち、前胸部 ST 低下を 7 例にみられた。負荷による最大到達心拍数は各群間で差はなかった。胸痛の出現は II 群で多い傾向にあったが、他群と有意差はなかった。

既報4)に準じて、仰臥位エルゴメーター使用による symptom-limited の肺最大運動負荷を加え、運動負荷12誘導心電図、運動負荷 TI-201 心筋イメージ、運動負荷心肺シミュレーションを記録し

Table 1. Clinical data of subjects

<table>
<thead>
<tr>
<th></th>
<th>Group Ia (N=11)</th>
<th>Group Ib (N=7)</th>
<th>Group II (N=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>58.1±8.5</td>
<td>56.4±10.1</td>
<td>60.3±6.04</td>
</tr>
<tr>
<td>Male/Female</td>
<td>9/2</td>
<td>7/0</td>
<td>6/4</td>
</tr>
<tr>
<td>Peak heart rate (/min)</td>
<td>117.2±11.9</td>
<td>124.3±13.7</td>
<td>114.3±16.7</td>
</tr>
<tr>
<td>Chest pain (n)</td>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Fatigue or dyspnea (minutes)</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Group Ia=Inferior old myocardial infarction (OMI) with single-vessel disease having no exercise-induced precordial ST depression.
Group Ib=Inferior OMI with single-vessel disease accompanied by exercise-induced precordial ST depression.
Group II=Inferior OMI with multi-vessel disease.
た。負荷心電図は負荷 T1-201 心筋イメージング施行時に Mason-Likar の方法3)に準じて記録した。Ellestad ら5)の診断基準により ST 低下の有無を判定した。すなわち、PQ interval を基準線として、任意の誘導における 1 mm 以上の horizontal あるいは downsloping の ST 低下、あるいは J point より 0.06 秒における 1.5 mm 以上の uprising の ST 低下を陽性とした。

負荷 T1-201 心筋イメージは負荷直後像と 3～4 時間後の再分布像を正面、左前斜位 30 度、60 度の三方向で描像し、えた心筋イメージを、セグメント分類に従って Fig. 1 のごとく、各方向おおの 5 つのセグメントを計 15 つのセグメントにわけ、陰影欠損、再分布の有無を視覚的に評価した。負荷直後の虚血像の大きさを、各方向ごとに陰影欠損の分が示されたセグメントの数を求めて、異常の総和を算出して defect size として半定量的に求めた。また心筋の可逆性虚血、梗塞心内あるいは周囲と非梗塞部冠動脈支配域の遠隔部心筋に分け評価し、再分布の有無を検討した。

平衡時心ブールイメージの負荷に対する左室の駆出率反応は、安静時に比べて 5% 以上の駆出率増加がみれた場合に正常駆出率反応とし、5% 未満の場合には異常駆出率反応とした。さらに安静時に比べて 5% 以上の駆出率低下を示した場合は、著明な駆出率低下反応とした。またシネモード表示により左室輪郭をテレビ画面に写し出し、Fig. 2 に示したように、septal, apical, posterolateral と左室を 3 区分し、運動負荷に対する局所壁運動悪化の有無を判定した。

下壁梗塞の多枝病変の存在診断能の比較において、もしくは心電図の診断基準として、負荷 T1-201 心筋イメージにては遠隔部心筋虚血の有無を、また負荷心ブールイメージにては負荷に対して 5% 以上の著明な駆出率低下反応、あるいは新たな局所壁運動異常の出現をもって多枝病変陽性とした。

有意差の検定には Student t-test, Fisher の直接検定を用いた。また各種検査法の多枝病変診断能の比較にあたっては、

sensitivity = true positive / (true positive + false negative) (FP)
specificty = true negative / (true negative + false positive) (FP)
positive predictive value = TP / (TP + FP)
negative predictive value = TN / (TN + FN)
predictive accuracy = (TP + TN) / all subjects

とした。

結果

1. 心電図所見
Ib 群での前胸部 ST 低下がいわゆる reciprocal な ST 変化であるか否かを検討するために、Ia 群と Ib 群とで下壁誘導における ST 上昇の出
Table 2. Electrocardiographic findings

<table>
<thead>
<tr>
<th></th>
<th>Group Ib (N=7)</th>
<th>Group II (N=7)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead of positive ST depression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_1</td>
<td>0 (14.3%)</td>
<td>0</td>
<td>NS</td>
</tr>
<tr>
<td>V_2</td>
<td>1 (28.6%)</td>
<td>2 (85.7%)</td>
<td>NS</td>
</tr>
<tr>
<td>V_3</td>
<td>1 (14.3%)</td>
<td>6 (71.4%)</td>
<td>p<0.02</td>
</tr>
<tr>
<td>V_4</td>
<td>7 (100%)</td>
<td>7 (100%)</td>
<td>NS</td>
</tr>
<tr>
<td>V_5</td>
<td>3 (42.9%)</td>
<td>5 (71.4%)</td>
<td>NS</td>
</tr>
<tr>
<td>V_6</td>
<td>1 (14.3%)</td>
<td>3 (42.9%)</td>
<td>NS</td>
</tr>
<tr>
<td>Types of ST depression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal or downslope</td>
<td>1 (14.3%)</td>
<td>6 (85.7%)</td>
<td>p<0.02</td>
</tr>
<tr>
<td>Slow rise</td>
<td>6 (85.7%)</td>
<td>1 (14.3%)</td>
<td>NS</td>
</tr>
<tr>
<td>Duration of ST depression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><3 min</td>
<td>5 (71.4%)</td>
<td>1 (14.3%)</td>
<td>NS</td>
</tr>
<tr>
<td>≥3 min</td>
<td>2 (28.6%)</td>
<td>6 (85.7%)</td>
<td>NS</td>
</tr>
<tr>
<td>Degree of ST depression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2 mm</td>
<td>5 (71.4%)</td>
<td>3 (42.9%)</td>
<td>NS</td>
</tr>
<tr>
<td>≥2 mm</td>
<td>2 (28.6%)</td>
<td>4 (57.1%)</td>
<td>NS</td>
</tr>
</tbody>
</table>

Table 3. Association of exercise-induced precordial ST depression and myocardial defects in inferior myocardial infarction with single vessel disease

<table>
<thead>
<tr>
<th>Segment number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Ia (N=11)</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Group Ib (N=7)</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>p value</td>
<td>NS</td>
</tr>
</tbody>
</table>

Numeral in each cell indicates the incidence of positive myocardial defects on TI-201 myocardial images in each segment.
表 4. Stress TI-201 myocardial scintigraphic findings

<table>
<thead>
<tr>
<th></th>
<th>Group Ia (N=11)</th>
<th>Group Ib (N=7)</th>
<th>Group II (N=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post exercise defect size</td>
<td>4.45±2.11</td>
<td><0.05</td>
<td>6.25±1.50</td>
</tr>
<tr>
<td>Reversible ischemia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peri-infarctual</td>
<td>2 (18.2%)</td>
<td>NS</td>
<td>1 (10%)</td>
</tr>
<tr>
<td>Distance from infarcted zone</td>
<td>0</td>
<td>NS</td>
<td>7 (70%)</td>
</tr>
</tbody>
</table>

表 5. Stress radionuclide ventriculographic findings

<table>
<thead>
<tr>
<th></th>
<th>Group Ia (N=7)</th>
<th>Group Ib (N=7)</th>
<th>Group II (N=9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEF at rest</td>
<td>49.8±11.7</td>
<td>NS</td>
<td>47.7±7.6</td>
</tr>
<tr>
<td>Stress LVEF</td>
<td>54.2±6.2</td>
<td>NS</td>
<td>39.1±14.3</td>
</tr>
<tr>
<td>Abnormal LVEF response</td>
<td>4 (57.1%)</td>
<td>NS</td>
<td>9 (100%)</td>
</tr>
<tr>
<td>Marked decline of LVEF (J EF<−5%)</td>
<td>1 (14.3%)</td>
<td>NS</td>
<td>5 (55.6%)</td>
</tr>
<tr>
<td>Wall motion abnormality at rest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any segments of LV</td>
<td>4 (57.1%)</td>
<td>NS</td>
<td>9 (100%)</td>
</tr>
<tr>
<td>Septum</td>
<td>2 (28.6%)</td>
<td>NS</td>
<td>8 (88.9%)</td>
</tr>
<tr>
<td>Apex</td>
<td>2 (28.6%)</td>
<td>NS</td>
<td>5 (55.6%)</td>
</tr>
<tr>
<td>Posterolateral</td>
<td>2 (28.6%)</td>
<td>NS</td>
<td>4 (44.4%)</td>
</tr>
<tr>
<td>New wall motion abnormality in response to exercise</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any segments of LV</td>
<td>0</td>
<td><0.05</td>
<td>6 (66.7%)</td>
</tr>
<tr>
<td>Septum</td>
<td>0</td>
<td><0.05</td>
<td>4 (44.4%)</td>
</tr>
<tr>
<td>Apex</td>
<td>0</td>
<td>NS</td>
<td>4 (44.4%)</td>
</tr>
<tr>
<td>Posterolateral</td>
<td>0</td>
<td>NS</td>
<td>3 (33.3%)</td>
</tr>
</tbody>
</table>

LV=left ventricle；EF=ejection fraction.

心筋・イメージ上の陰影欠損部位と前胸部 ST 低下の有無との関連を検討したものであるが、segment 9 の陰影欠損の有無は前胸部 ST 低下と有意な関連を示した。すなわち、Ib 群での segment 9 における陰影欠損の出現は 85.7% で、Ia 群の 9.1% に比し有意に多かった。

Table 4 は負荷 TI-201 心筋イメージ所見を各群間で比較したものである。負荷直後の陰影欠損の大きさは、Ib 群は Ia 群に比し、より広範であった。しかし、Ib 群と II 群とは差はなく、可逆性虚血においてみると、梗塞巣内あるいは周囲での出現は各群とも少なく有意差をみなかったが、遠隔部心筋の可逆性虚血は、他群に比し、II 群で高頻度に出現し、10 例中 7 例 (70%) に認められた。

3. 心肺・イメージ所見

Table 5 は負荷心肺・イメージ所見を比較したものである。まず Ia 群と Ib 群とで比較すると、安静時駆出率は両群間で差はなかった。負荷に伴い、Ia 群では駆出率は増加する傾向にあったが、Ib 群では安静時と差がなかった。異常駆出率反応や著明駆出率低下反応の出現は両群で差はなかった。しかしながら、負荷に伴って出現する中隔壁運動異常の出現は Ib 群で 57.1% にみられ、Ia 群に比し有意に高頻度であった。

つぎに Ib 群と II 群を比較すると、負荷に対する駆出率変化は Ib 群では変化はなかったが、II 群は 47.7±7.6% より 39.1±14.3% と有意に
Table 6. Diagnostic ability of noninvasive testing for detecting MVD in patients with prior inferior myocardial infarction

<table>
<thead>
<tr>
<th>Test</th>
<th>Sensitivity for MVD (%)</th>
<th>Specificity for MVD (%)</th>
<th>Predictive value for MVD</th>
<th>Accuracy for MVD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Positive test (%)</td>
<td>Negative test (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(50)</td>
<td>(78.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p<0.05</td>
<td>11/14</td>
</tr>
<tr>
<td></td>
<td>7/10 (70)</td>
<td>11/18 (61.1)</td>
<td>7/14 (50)</td>
<td>p<0.05</td>
</tr>
<tr>
<td>Exercise ECG</td>
<td></td>
<td></td>
<td>7/7 (100)</td>
<td>18/21</td>
</tr>
<tr>
<td>(N=28)</td>
<td></td>
<td></td>
<td>(85.7)</td>
<td></td>
</tr>
<tr>
<td>Exercise T1-201</td>
<td></td>
<td></td>
<td>7/12 (58.3)</td>
<td>9/11</td>
</tr>
<tr>
<td>(N=28)</td>
<td>7/10 (70)</td>
<td>18/18 (100)</td>
<td>(81.8)</td>
<td></td>
</tr>
<tr>
<td>Exercise RNV</td>
<td>7/9 (77.8)</td>
<td>9/14 (64.3)</td>
<td>p<0.01</td>
<td></td>
</tr>
<tr>
<td>(N=23)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MVD = multivessel disease; RNV = radionuclide ventriculography. Only significant p values are indicated.

低下した。両群とも異常駆出率反応の出現率が高く、両群間に有意差はなかったが、著明な駆出率低下反応はII群で9例中5例（55.6％）にみられ、I群の7例中2例（28.8％）に比し高い出現頻度にあった。

負荷に伴う左室局所壁運動の悪化はIb群においてしばしば出現し、II群に比し、有意差はみられなかった。

4. 下壁心筋梗塞における多枝病変診断能の比較

Table 6 は負荷心電図、負荷 T1-201 心筋イメージング、負荷心血プールイメージングにおいて、下壁心筋梗塞における多枝病変の診断能を比較したものである。Table に示すように、sensitivity は各検査法で差をみなかったが、specificity, positive predictive value, accuracy は負荷心筋イメージングが他法に比べて有意に優れていた。

考 择

心筋梗塞後患者に負荷心電図を施行した場合、非梗塞部誘導における ST 低下が出現すれば多枝病変合併を考慮する必要があるといわれている1-5。しかしながら一枝病変心筋梗塞においても、同様な ST 低下が観察される。陳旧性心筋梗塞例中一枝病変の下壁梗塞患者を対象とした場合、運動負荷心電図による ST 低下の出現頻度は、従来報告された多枝病変診断の特異度から求めると 7％～58％ であり7-11)、報告によくても 50％を越えている。この値は本研究でも 38.9％であり、決して少なくはないと、しかしながら、従来の報告では、一枝病変下壁梗塞例で運動負荷により生じる非梗塞部 ST 低下に関し、その心電図的特徴、ST 低下の機序、多枝病変との鑑別につき、詳細に分析したものは少ない。本研究は以上の問題点に関する核医学的手法を用いた分析である。

1. 一枝病変下壁梗塞例慢性期における運動負荷心電図でみられる前胸部 ST 低下の機序

下壁梗塞の急性期に生じる前胸部 ST 低下の機序に関する研究は数多くみられ、1）広範な心筋虚血にみられる現象12,13）、2）梗塞部誘導における ST 上昇の reciprocal な変化14）、3）遠隔部心筋虚血の反映15）、4）下壁梗塞の特微的な解剖学的占拠部位との関連16,17）など、さまざまな指摘がなされている。しかし下壁梗塞慢性期に施行した負荷心電図でみられる前胸部 ST 低下の機序に関しては、ほとんど分析されていない。我々は先の研究18)で、慢性期に施行した一枝病変心筋梗塞症患者の運動負荷心電図を、同時期に施行した負荷 T1-201 心筋イメージング所見を対比することにより、非梗塞部 ST 低下の機序を検討した。その中で、一枝病変下壁梗塞における前胸部 ST 低下は、梗塞巣の下部心室壁中の拡がりを密接
に関連することを示した。本研究では TI-201 心筋イメージ所見に加えて、負荷心臓プールイメージ上の左室局所壁運動の負荷に対する挙動を分析することにより、ST 下低下の機序解明に努めた。

急性下壁梗塞における非梗塞部 ST 低下の機序から、一枝病変下壁梗塞の慢性期運動負荷心電図にみられる前胸部 ST 低下の機序を考察すると、まず第一に、前胸部誘導での ST 低下は下壁誘導での ST 上昇の reciprocal な変化であるという可能性がある。しかしながら、本研究では Ia 群と Ib 群とで下壁節導での負荷に伴う ST 上昇の出現は違う、したがって reciprocal な変化のみでは説明しにくいと思われた。第二に、遠隔部の心筋虚血を反映して ST 低下が生じた可能性がある。しかし対象にした Ia 群、Ib 群ともに、冠動脈造影所見上、非梗塞部支配の冠動脈に有意な狭帯がないことや、負荷心筋イメージ上、遠隔部心筋に虚血の所見が出現しなかったことより、この可能性も否定的と思われる。第三に、梗塞部の大きさの影響を考え、負荷 TI-201 心筋イメージの陰影欠損の大きさから検討したが、Ib 群は Ia 群に比し欠損の大きさが有意に大であり、前胸部 ST 低下は梗塞サイズと関連することが示された。最後に、梗塞部の特異な解剖学的占拠部位との関連では、前胸部 ST 低下の有無は負荷心筋イメージ上のセグメント 9、つまり Rigo らの報告に従えば解剖学的には下部心室中隔に相当する部位の陰影欠損の有無と関連し、また負荷心臓プールイメージにおいて、負荷により出現する心室中隔の壁運動の悪化との関連性があった。

以上より、一枝病変下壁梗塞症の運動負荷心電図でみられる前胸部 ST 低下は、単なる reciprocal な ST 変化のみでは説明し難く、梗塞部の特異な解剖学的占拠部位、つまり下壁梗塞の下部心室中隔への拡がりと密接に関連するもののと考えられる。コリメーターの撮影方向を考慮すると、同部位は前胸部に近接して位置しており、前胸部誘導の ST 偏位に影響するものと推察される。

さらに重要な問題として、この前胸部 ST 低下が、はたして可逆性心筋虚血を反映して生じたものであるか否かがあげられる。負荷 TI-201 心筋イメージは可逆性心筋虚血の有無の診断に有用な検査法であるが、Kaul らは、一枝病変梗塞症の planar 負荷 TI-201 心筋イメージにおいても、しばしば梗塞部あるいは周辺の再分布が出現し、心筋虚血の存在診断において、負荷心電図の ST 低下と比べ、診断精度が高いと報告している。しかしながら本研究では、前胸部 ST 低下を呈した一枝病変下壁梗塞症例でも、planar 負荷 TI-201 心筋イメージ上の再分布は明らかでなかった。二神らは、TI-201 single photon emission computed tomography (SPECT) を用いて梗塞心の負荷心電図における ST 偏位を検討している。一枝病変梗塞症例で負荷心電図 ST 低下をみた症例では、梗塞部非同一動脈支配域で再分布をみることが多いと述べている。planar TI-201 心筋イメージは TI-201 SPECT に比べて診断精度が劣るため、本研究では梗塞部あるいは周辺に生じた可逆性虚血を捉えきれなかった可能性もある。

心臓プールイメージの負荷に対する左室局所壁運動分析では、前胸部 ST 低下のない Ia 群では壁運動の悪化はみられなかったが、それが出現する Ib 群では局所壁運動異常が高頻度に出現し、ことに心室中隔の壁運動異常の出現在率には両群間で有意差を認めた。負荷に伴う局所壁運動異常の出現は可逆性虚血を反映した所見との報告が多い。本研究の一枝病変下壁梗塞患者でみられた心臓プールイメージ上の心室中隔の壁運動異常は、梗塞周辺の心筋虚血を反映するものと推定される。

以上、負荷心臓プールイメージ所見を考慮すると、一枝病変下壁梗塞患者の負荷心電図で出現する前胸部 ST 低下は、下壁より下部心室中隔に及んだ梗塞部、あるいはその周辺の可逆性虚血に関連して生じたものと解釈される。
2. 下肢膝下における一枝病変と多枝病変の鑑別

下肢膝下における一枝病変と多枝病変の非梗塞部 ST低下の心電図学的差異について検討した報告は、我々が調べ得た範囲内では記載がなかった。本研究で明らかに、多枝病変下肢膝下の運動負荷心電図でみられる前胸部 ST低下は、模式別には horizontal 型あるいは downsloping 型が多く、ST低下の持続時間は長く、程度は強い傾向にあり、一枝病変下肢膝下にみられる前胸部 ST低下とは差異を認めた。負荷心電図の ST低下と虚血の程度との関連について検討した従来の報告によると23-25, 本研究の多枝病変下肢膝下にみられた ST低下は、一枝病変下肢膝下のそれと比べ、より強い心筋虚血を反映した所見と考えられる。また、前胸部誘導における ST低下の出現部位の差をみると、V3誘導での ST低下の有無は両者の鑑別点となり得ると考えられる。

初回下肢膝下の多枝病変診断に果たす負荷 Ti-201 心筋イメージングの役割については、いくつかの報告がみられる。Rigoら26は、下肢膝下においては、前肢膝下を見て、負荷 Ti-201 心筋イメージングによる多枝病変の診断能は良好であったと述べている。また Dunnら27, Bamrahら28も、初回下肢膝下破症の多枝病変診断能を負荷 Ti-201 心筋イメージングと負荷心電図とで比較すると、前者は後者に比べて sensitivity, specificity ともに優れていたと結論している。本研究においても、負荷 Ti-201 心筋イメージングの遠隔部心筋虚血の有無、下肢膝下の多枝病変合併の有無を診断する上で優れた指標であることが示された。

負荷心肺イメージングの虚血性心疾患の評価に果たす役割については、これまでも数多く議論されてきた。心肺イメージングの指標としては、運動負荷に対する駆出率反応や左室局所壁運動異常の出現が上げられる。駆出率反応を負荷 Ti-201 心筋イメージングの心筋虚血の有無との関連でみると、虚血性虚血の出現は駆出率低下と密接に関連することが指摘されている29,30。ことに多枝病変心肺イメージングでは、負荷により、5%以上の著明駆出率低下を認めることが多いために指摘がある31。本研究でも多枝病変下肢膝下では著明な駆出率低下例数が多く出現した。しかしながら、非梗塞部 ST低下を伴う多枝病変下肢膝下症例でも、出現頻度は高くないが、著明な駆出率低下を認めることがあり、両者の明確な鑑別点とはなり得なかった。

また、運動負荷に対する局所壁運動の悪化は、負荷 Ti-201 心筋イメージングの可逆性虚血に対応して出現することが指摘されている32,33,34。本研究でも多枝病変下肢膝下症例においては、心筋イメージングの可逆性虚血と対応するとと思われる部位の局所壁運動異常の出現がみられた。非梗塞部 ST低下を伴う一枝病変下肢膝下においても、心肺イメージングにおいて、梗塞部位あるいは周囲の周辺領域心尖部にかけての局所壁運動異常が高頻度に出現したが、心筋イメージングの可逆性虚血と壁運動異常との対応は明らかでなかった。Adamsら35も、非梗塞部 ST低下を伴う一枝病変心肺イメージングにおいて、高頻度に左室局所壁運動異常が出現することを指摘しており、本研究と一致した結果を得ている。以上より、負荷心肺イメージングの局所壁運動異常は前胸部 ST低下を伴う一枝病変下肢膝下症においてもしばしば出現し、多枝病変下肢膝下の診断にとって有力な根拠となりうる特異な局所壁運動異常の出現部位はなく、負荷に伴って出現する局所壁運動異常を指標とした場合、両者の鑑別は困難と思われた。

以上、下肢膝下の一枝病変と多枝病変の非侵襲的な診断能の比較を行ったが、負荷心電図、負荷心肺イメージング、心肺イメージングにおける遠隔部心筋虚血の有無が、最も良好な診断精度を有するものと結論される。

要 約

一枝病変下肢膝下の慢性期に運動負荷 12 誘導心電図を施行し、そのさい出現する前胸部 ST低
慢性期下肢梗塞の負荷心電図

下の機序を分析するとともに、多枝変状下肢梗塞との鑑別を試みた。

対象は負荷心電図上、前胸部 ST 低下を示さない 11 例 (Ia 群)、同じく ST 低下を示す 7 例 (Ib 群)、計 18 例の一枝変状下肢梗塞、ならびに多枝変状下肢梗塞 10 例 (II 群) である。これらの症例について、負荷 thallium-201 心筋イメージ

ング、負荷心プールイメージングを施行した。

負荷心筋イメージング上、梗塞巣は Ib 群で Ia

群よりも広範であり、またその解剖学的な広がり

では、下部心室中隔が有意に多かった。負荷心プ

ールイメージング、負荷による心室中隔運動悪化

の出現率は Ib 群で高かった。

多枝変状下肢梗塞の診断に対し、各検査法の

sensitivity に差はなかったが、心筋イメージ

ングに比べると、負荷心電図および負荷心プールイメージングの specificity, predictive value は低かっ

た。

以上より、一枝変状下肢梗塞で負荷心電図上出

現する前胸部 ST 低下は、下部心室中隔の虚血を

反映するものと考えられ、また下肢梗塞の多枝病

変診断には、負荷心筋イメージングが最も優れて

いると思わわれる。

文献
14) Ferguson DW, Pandian N, Kioschos M, Marcus ML, White CW: Angiographic evidence that reciprocal ST-segment depression during acute myocardial infarction does not indicate remote ische-
15) Boden WE, Bough EW, Korr KS, Russo J,

